
CS160A EXERCISES-WILDCARDS Boyd

Exercises-Wildcards
Description

This exercise is about shell wildcards. Wildcards (which may also be called shell metacharacters, or,
more accurately, globbing characters) are special characters used in filename patterns. When the shell
encounters a wildcard pattern on a command-line, it replaces it, if possible, with a list of paths that match
the wildcard pattern. There are three things you should learn from this exercise:

• the globbing functions in the C library expand wildcards. The use of these functions is limited to a few
programs - shells and the find command in particular. Almost no other commands will expand
wildcards, For more information, check out glob(7) (use the command man 7 glob)

• the wildcard operators [globbing characters], what they mean and how to use them.

• ways to suppress the interpretation of wildcard operators by quoting them.

The Wildcard Operators

The following sequences of characters are interpreted as wildcards by the shell. Enclosing characters in
any type of quotes (single- or double-) hides them from the shell.

Operator Meaning Example matches objects whose names are

* anything, including
nothing A* capital A followed by any number (including

zero) of any combination of characters

? a single character ??? exactly three characters long

a string of
characters
enclosed in

[]

a single character that is
one of the characters
enclosed in the brackets.

[abc]
a single character that is either a or b or c

two
characters

separated by
a dash

enclosed in
[]

one character whose
value is greater than or
equal to the first character
and less than or equal to
the second character

[a-z]

a single character whose value is greater
than or equal to 'a' and less than or equal
to 'z' . (i.e., a lowercase character)
Note: uppercase characters have consecutive
values, as do lowercase characters, as do
digits. However, [a-Z] does not do what you
want. Use [a-zA-Z] instead.

a character
class

enclosed in
[]

a single character that is
a member of that
character class

[[:alpha:]]

the character class is alpha. It is indicated
by [:alpha:] The inner brackets indicate the
character class. The outer brackets indicate
the character set (that it is a single
character) Both sets of brackets are
needed.

Classes include: alpha, upper, lower, digit,
alnum, blank, space(whitespace), punct,
print, ascii, cntrl, ascii

if the first
character

inside of the
[] is ! or ^

! negates the character
set. a single character
that is not a member of
the set.

[^[:lower:]]

a single character that is not a member of
the character class [:lower:] Thus, any
character that is not lowercase.

Note: * and ? will not match a leading . in a name (indicating a hidden file)

Note2: ! is the traditional negation operator in character sets. ^ is also recognized by bash for this
function to make it consistent with regular expressions, which we will cover later. We will use them
interchangeably, but ^ is more important to know.

Exercises-Wildcards CS160A Page 1 of 4
This document was produced with free software: OpenOffice.org on linux.

CS160A EXERCISES-WILDCARDS Boyd

bash also offers brace expansion, which uses braces to enclose a comma-separated list of alternatives.
Brace expansion is not a wildcard, as this sequence is expanded whether or not each possibility exists,
rather it is a pattern generator.

{xyz,abc} expands to the list xyz abc

abc{xyz,abc} expands to the list abcxyz abcabc
*.{doc,html} expands to *.doc *.html which are then expanded as wildcards

Exercises

First, interpret the following wildcards:

1. [[:alpha:]]*

2. [^012]?

3. z*a?

4. [0-9!a-z]*

5. *a*z

6. [[:alpha:]]

7. *[^[:digit:][:punct:]]*

Now, connect to the directory wildcards beneath the class public directory on hills to do the remainder
of the exercises.

8. Take the wildcard pattern from #2 and issue the following commands:

• precede the wildcard with ls. It looks like ls understands wildcards.

• precede the wildcard with echo. This shows that the shell expands wildcards.

• precede the wildcard with echo ls. This shows that the shell expands the wildcard before it
passes it to ls.

• precede the wildcard with ls and put single quotes around the wildcard. This suppresses the
shell's wildcard expansion and shows you that ls doesn't know anything about wildcards.

9. Take the wildcard pattern from #3 and issue the following commands:

• precede the wildcard with ls. Do the paths output seem to make sense?

• precede the wildcard with echo. Can you reconcile the output with that using ls?

• precede the wildcard with echo ls. This shows the command as it is executed.

• Can you put the above together and come up with an explanation? Test your theory by using
the command ls -dF followed by the wildcard. What do these options do?

From this point on we will be practicing using wildcards with the ls command. As you just learned, it will
be less confusing if you use the options -dF when using ls in the remainder of this exercise.

Write commands to list objects in the current directory whose names

10. are three characters long

11. start with a letter, either upper- or lower-case

12. contain a digit anywhere in the name

13. end with a character that is not a digit

14. contain a blank

15. start with a .

16. start with a . and are a total of three characters long

17. contain at least one character that is neither a letter nor a digit

18. contains a left or right square bracket [or]

Exercises-Wildcards CS160A Page 2 of 4
This document was produced with free software: OpenOffice.org on linux.

CS160A EXERCISES-WILDCARDS Boyd

19. contain at least one instance of each of a and q in the name, in either order (you need two wildcards
to do this!)

Next, write commands to list objects whose paths are

20. in a subdirectory of the current directory. The name of the object can be anything.

21. in a subdirectory of the current directory whose name starts with a digit. The name of the object
must be five characters long and start with a letter.

Last, to show you that this really has nothing at all to do with ls:

22. output the contents of all objects in the current directory whose name starts with a

Answers

The set of wildcards match anything in the current directory whose name

1. begins with a lower-case letter

2. is a total of two characters long. The first character may not be 0 1 or 2

3. begins with a z and ends with an a followed by any single character

4. starts with a digit, lowercase letter or the ! character (the ! must come at the beginning of the
character set to negate it)

5. contains an a and ends with a z

6. is a single alphabetic character

7. contains a character that is neither a digit nor a punctuation character

8. Here's the commands that you should have used and some interpretation:

• ls [^012]? - ls seems to understand wildcards (but it doesn't)

• echo [^012]? - echo outputs the list of names that match the pattern!

• echo ls [^012]? - echo outputs what an ls command looks like after the shell has
expanded the wildcard. Are there any wildcards left for ls to worry about?

9. Here are the commands that you should have used and some interpretation:

• ls z*a? - ls outputs names, but they don't appear to match the pattern!

• echo z*a? - echo outputs the list of names that match the pattern!

• echo ls z*a? - echo outputs what an ls command looks like after the shell has expanded
the wildcard. If this is the command as it is executed, why does ls put out strange names?

• adding the options -dF shows that the object that matches the wildcard is a directory.
Remember that ls outputs the contents of the directory by default. The -d suppresses this
behavior and the -F puts the / at the end to indicate the directory.

10. ls -dF ???

11. ls -dF [a-zA-Z]* # or [[:alpha:]]*

12. ls -dF *[0-9]* # or *[[:digit:]]*

13. ls -dF *[^0-9] # or *[^[:digit:]]

14. ls -dF *' '* # Note you must use quotes to 'hide' the blank OR
ls -dF *\ * # use a backslash before the blank. You can also use the
ls -dF *[[:blank:]]* # :blank: class. Careful, *[' ']* or *[\]* do not work!

15. ls -dF .*

16. ls -dF .?? # Why did this file not appear in the output of #8?

17. ls -dF *[^a-zA-Z0-9]* # can you do this using character classes?

18. ls -dF *[][]* # a character set containing the characters [and]

Exercises-Wildcards CS160A Page 3 of 4
This document was produced with free software: OpenOffice.org on linux.

CS160A EXERCISES-WILDCARDS Boyd

19. ls -dF *a*q* *q*a*

20. ls -dF */*

21. ls -dF [0-9]*/[a-zA-Z]???? # or [[:digit:]]*/[[:alpha:]]????

22. cat a*

Exercises-Wildcards CS160A Page 4 of 4
This document was produced with free software: OpenOffice.org on linux.

