
CS160A EXERCISES-FILEUTILS3 Boyd

Exercises-Fileutils3
Filenames and directory structure are an illusion. They don't really exist. Sorry.

In actuality, all data on a computer is represented as numbers. This includes where data exists. What we
might know as a file named resume in our home directory might be known to the system as data object
#45663 on device #5. Our home directory is really a data object that is simply interpreted as a table
associating data object numbers with some text names: irrelevant as far as the system is concerned.
(These data object numbers are called inode numbers, since they refer to the master table that keeps
track of all data objects: the inode table. The term inode stands for information node.) In order to truly
understand the subject of this exercise set - links - we must be aware of this distinction.

A link is often referred to as another name for a file. A better definition would be an association between
a name and a data object [number]. In this sense, we see that all filenames are links; in fact, links are
essentially what are placed in directories. Most data objects that are regular files have a single link.
Some regular files have multiple links. All directories have at least two links.

Unix has two types of links: hard links and symbolic (or soft) links. We have been discussing hard links.
This is the topic of part one. Symbolic links are the topic of part two. Traditionally, use of the term link
implied hard link, which is the origin of the term. Symbolic links, which were added to Unix later, however,
have become so common that it is wise to always qualify what you mean if it is important.

Begin by creating a links directory to work in and connecting to it.

Part One

Description

In this exercise you will practice creating and using hard links. Every association between a name and a
data object is a hard link, so a hard link can refer to anything. A user, however, can only create a hard
link to a regular file. Creating hard links to other types of objects is reserved to the operating system.

Exercise

You should be in your links directory.

1. Create a single file named resume by placing a string of text in it using cat or echo. Then list the file
with the options -li Notice the inode number. This is the number that is used internally in Unix to
identify the data object. (If we were strict about our terminology here we would say that the name
resume is a link to the data whose inode number is shown)

2. Add a second link to the data using the ln command. Name the link resume_ln. List both names
with the -li option. What do you notice? Using the cat command, display the contents of
resume_ln.

3. Remove the name resume using rm. Then list the directory contents again using -li. Display the
contents of the file resume_ln.

4. Rename resume_ln to resume. If a friend walked up to your terminal now, would he know that
steps 2 and 3 had occurred? In other words, could he tell that the original resume had been deleted?

5. Again, create a second link to resume. Name it resume_ln again. Then create a directory named
subdir and move resume to it. Can you cat resume_ln now? How about subdir/resume?

6. Try to create a hard link to subdir. Can you?

7. Change the permissions of resume_ln to 777. Then list resume_ln and subdir/resume using
-li. What happened to the permissions of subdir/resume? Can you explain this?

8. Overwrite the file resume_ln with a different string of text. Then use cat to display both resume_ln
and subdir/resume. Are you surprised?

9. Using the mv command, move resume_ln to the directory /tmp (If another student doing this
assignment did not clean up after themselves, you will find this difficult. You may have to rename
resume_ln as you move it.) Display the contents of your file on /tmp and the file subdir/resume.

Exercises-FileUtils3 CS160A Page 1 of 4
This document was produced with free software: OpenOffice.org on linux.

CS160A EXERCISES-FILEUTILS3 Boyd

10.Overwrite subdir/resume with a different string of text and redisplay both files. Can you explain
this? List both using the -li option. What do you notice about the inode numbers?

11.Last, try to create a hard link named link to the [non-existent] file foo. Can you?

Remove the file you created on the /tmp directory when you are finished.

Part Two

Description

In this exercise you will practice creating and using symbolic (soft) links, also called symlinks. A symbolic
link acts as if it is a small file that contains a string of text. The string of text could be anything, but it will
be interpreted as a path when the link is used, and the system will substitute the path for the name of the
symlink. Thus, if a symbolic link named myfile contains dir1/file2, the command cat myfile will
result in an attempt to cat dir1/file2. No checking of the path is performed when the link is created:
you must use the link to see if it works.

Unlink hard links, which can only refer to regular files, a symlink can have any path in it. Thus you can
have symbolic links to directories, devices, etc.

Note: in this exercise, the options you will be using for ls are both upper- and lower-case Ls.

Exercise

You should be in your links directory. You will need a resume file in your links directory when you
start this exercise. You could either retrieve the one from your subdir directory or create a new one.

1. Set the permissions of resume to 644. Then make two symbolic links to resume. The first one should
contain a relative path to resume (e.g., resume). This link should be named rel_symlink. The
second should contain an absolute path to resume. It should be named abs_symlink. You can
easily do this by using $PWD/resume (PWD is a variable that contains the path to the current
directory). Using the cat command, ensure that the symbolic links work.

2. List the symbolic links and the file they point to using the -l option. Note the permissions, owner,
group, size, and what appears in the name field of the symbolic links. List the symbolic links and
resume again using the -lL options. What is different?

3. Move the resume file to the parent directory. Try to cat the file using the symbolic links again. Do
they work? What does ls -l show now? How about if you add the -L option? Move the resume
file back when you are finished

4. Move the symbolic links to the parent directory. Do the links work now? What happens when you try
to list them using -Ll?

5. Now move the resume file back to the parent directory. Try using the symbolic links again. What
happens? Move resume and the symbolic links back to the links directory and ensure that they work
correctly.

6. Change permissions of the relative symbolic link to 600. Then list it with -l. What do you see? List it
again after adding the -L option. What permissions changed?

7. Create a symbolic link and put the string unix is weird in it. Try to cat the symlink. Then create a
file named unix is weird, putting a string of text in it. Try to cat the symlink again. This shows
that a symlink and the item it refers to are independent.

8. Create a symbolic link to the current directory. What happens when you run ls on it?

Delete the links directory and its contents when you are finished.

Exercises-FileUtils3 CS160A Page 2 of 4
This document was produced with free software: OpenOffice.org on linux.

CS160A EXERCISES-FILEUTILS3 Boyd

Answers

Part One

1. echo "This is resume" > resume
ls -li resume

2. ln resume resume_ln
ls -li resume resume_ln
cat resume_ln
Both links have exactly the same information, as they reference the same
object (as indicated by the inode number).

3. rm resume
ls -li
cat resume_ln

4. mv resume_ln resume
It would be impossible to tell that this was not the original link to
resume.

5. ln resume resume_ln
mkdir subdir
mv resume subdir
cat resume_ln subdir/resume # both still succeed

6. ln subdir subdir_ln # this command fails

7. chmod 777 resume_ln
ls -li resume_ln subdir/resume
The permissions of the object changed, so both links show the new
permissions.

8. echo "This is the new resume_ln" > resume_ln
cat subdir/resume resume_ln

9. mv resume_ln /tmp/resume_ln
cat /tmp/resume_ln subdir/resume # both files look the same

10.echo "This is the newer resume file" > subdir/resume
cat /tmp/resume_ln subdir/resume # now they have different contents
ls -li /tmp/resume_ln subdir/resume # now they have different i-numbers
Note: since /tmp is on a different partition than the original file,
the mv command became a combination of cp and rm

11.ln foo link # this fails, since foo doesn't exist
rm /tmp/resume_ln

Part Two
mv subdir/resume .

1. chmod 644 resume
ln -s resume rel_symlink
ln -s $PWD/resume abs_symlink
cat rel_symlink abs_symlink

2. ls -l rel_symlink abs_symlink resume
ls -lL rel_symlink abs_symlink resume
adding -L shows what the link points to, instead of the symlink itself

3. mv resume ..

Exercises-FileUtils3 CS160A Page 3 of 4
This document was produced with free software: OpenOffice.org on linux.

CS160A EXERCISES-FILEUTILS3 Boyd

cat rel_symlink
cat abs_symlink # neither symbolic link works
ls -l rel_symlink abs_symlink # cant tell anything
ls -lL rel_symlink abs_symlink # this is what a 'broken' symlink looks
like
mv ../resume .

4. mv *symlink ..
cat ../*symlink # the absolute symlink now works, but not the relative one

5. mv resume ..
cat ../*symlink # now the relative symlink works, but the abs one fails
mv ../*symlink .
mv ../resume .

6. chmod 600 rel_symlink
ls -l rel_symlink # the chmod didn't seem to work
ls -Ll rel_symlink # the chmod affected the resume file, not the symlink
(try listing resume with -l)

7. ln -s 'unix is weird' slink
cat slink # of course, this fails
echo hello > 'unix is weird'
cat slink # now it succeeds

8. ln -s . dot_slink
ls dot_slink # this lists the current directory

cd ..
rm -r links

Exercises-FileUtils3 CS160A Page 4 of 4
This document was produced with free software: OpenOffice.org on linux.

